If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-192x+1024=0
a = 1; b = -192; c = +1024;
Δ = b2-4ac
Δ = -1922-4·1·1024
Δ = 32768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32768}=\sqrt{16384*2}=\sqrt{16384}*\sqrt{2}=128\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-192)-128\sqrt{2}}{2*1}=\frac{192-128\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-192)+128\sqrt{2}}{2*1}=\frac{192+128\sqrt{2}}{2} $
| 2x+6+5x=6x-3 | | 1-(36q^-2)=0 | | 5(4y-12)=10 | | (2w^2)+w-10=0 | | 1-36q^-2=0 | | 2b+-10=-6 | | -3(11m-5)=0 | | -4x-2=22-4x | | -85=-5(2n+4)+5 | | 4(k-8)=-34+4k | | 8-4s=13 | | x2-12=x+34 | | 4x=21+11x | | 3x+9=-101-10x | | -(x+3)=3(x+3) | | Y=5h+25 | | 12(-3x+4)=10+2x | | 1+4k-7k=-1 | | 12=5m-2 | | 48x^2-640x-2048=0 | | 10(u–4)=20 | | 2(3x-1)=5(2x+2) | | 6u+9u=0 | | 7x+9=8x+13 | | -4.2=2.2+v/4 | | ½a+1¼=¼a | | 4+5x=-16+6 | | 9(3-x)=-4(2x+3) | | -1/4y-3/5=-1/3 | | 2x-2+x+5+50=180 | | 12=12+y2 | | 12/n=48 |